Exponential decay properties of Wannier functions and related quantities

Дата и время публикации : 2001-02-01T16:27:33Z

Авторы публикации и институты :
Lixin He (Department of Physics and Astronomy, Rutgers University)
David Vanderbilt (Department of Physics and Astronomy, Rutgers University)

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 4 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_wann/index.html
Первичная категория: cond-mat.mtrl-sci

Все категории : cond-mat.mtrl-sci

Краткий обзор статьи: The spatial decay properties of Wannier functions and related quantities have been investigated using analytical and numerical methods. We find that the form of the decay is a power law times an exponential, with a particular power-law exponent that is universal for each kind of quantity. In one dimension we find an exponent of -3/4 for Wannier functions, -1/2 for the density matrix and for energy matrix elements, and -1/2 or -3/2 for different constructions of non-orthonormal Wannier-like functions.

Category: Physics