Classification of one-dimensional quasilattices into mutual local-derivability classes

Дата и время публикации : 2000-09-27T11:32:10Z

Авторы публикации и институты :
Komajiro Niizeki
Nobuhisa Fujita

Ссылка на журнал-издание: J. Phys. Soc. Jpn. vol.71, 99-118 (2002)
Коментарии к cтатье: 42 pages, latex, 5 eps figures, Published in JPSJ
Первичная категория: cond-mat.mtrl-sci

Все категории : cond-mat.mtrl-sci

Краткий обзор статьи: One-dimensional quasilattices are classified into mutual local-derivability (MLD) classes on the basis of geometrical and number-theoretical considerations. Most quasilattices are ternary, and there exist an infinite number of MLD classes. Every MLD class has a finite number of quasilattices with inflation symmetries. We can choose one of them as the representative of the MLD class, and other members are given as decorations of the representative. Several MLD classes of particular importance are listed. The symmetry-preserving decorations rules are investigated extensively.

Category: Physics