Quasi-long range order in the random anisotropy Heisenberg model

Дата и время публикации : 1998-12-16T18:11:09Z

Авторы публикации и институты :
D. E. Feldman (Landau Institute for Theoretical Physics, Chernogolovka, Russia)

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 4 pages, REVTeX
Первичная категория: cond-mat.dis-nn

Все категории : cond-mat.dis-nn, cond-mat.stat-mech

Краткий обзор статьи: The large distance behaviors of the random field and random anisotropy Heisenberg models are studied with the functional renormalization group in $4-epsilon$ dimensions. The random anisotropy model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law $<{bf m}({bf r}_1) {bf m}({bf r}_2)>sim| {bf r}_1-{bf r}_2|^{-0.62epsilon}$. The magnetic susceptibility diverges at low fields as $chisim H^{-1+0.15epsilon}$. In the random field model the correlation radius is found to be finite at the arbitrarily weak disorder.

Category: Physics