Drift and trapping in biased diffusion on disordered lattices

Дата и время публикации : 1998-02-20T10:01:55Z

Авторы публикации и институты :
Deepak Dhar
Dietrich Stauffer

Ссылка на журнал-издание: Int. J. Mod. Phys. C9 (1998) 349.
Коментарии к cтатье: 4 pages, RevTex, 3 figures, To appear in International Journal of Modern Physics C, vol. 9
Первичная категория: cond-mat.stat-mech

Все категории : cond-mat.stat-mech

Краткий обзор статьи: We reexamine the theory of transition from drift to no-drift in biased diffusion on percolation networks. We argue that for the bias field B equal to the critical value B_c, the average velocity at large times t decreases to zero as 1/log(t). For B < B_c, the time required to reach the steady-state velocity diverges as exp(const/|B_c-B|). We propose an extrapolation form that describes the behavior of average velocity as a function of time at intermediate time scales. This form is found to have a very good agreement with the results of extensive Monte Carlo simulations on a 3-dimensional site-percolation network and moderate bias.

Category: Physics