The Calogero Model: Integrable Structures and Orthogonal Basis

Дата и время публикации : 1997-06-16T11:25:18Z

Авторы публикации и институты :
Miki Wadati
Hideaki Ujino

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 14pages, LaTeX file using fleqn.sty, to appear in the proceedings of the Workshop on the Calogero-Moser-Sutherland models in the CRM Series in Mathematical Physics (Springer-Verlag)
Первичная категория: cond-mat.stat-mech

Все категории : cond-mat.stat-mech, hep-th, math.QA, nlin.SI, q-alg, solv-int

Краткий обзор статьи: Integrability, algebraic structures and orthogonal basis of the Calogero model are studied by the quantum Lax and Dunkl operator formulations. The commutator algebra among operators including conserved operators and creation-annihilation operators has the structure of the W-algebra. Through an algebraic construction of the simultaneous eigenfunctions of all the commuting conserved operators, we show that the Hi-Jack (hidden-Jack) polynomials, which are an multi-variable generalization of the Hermite polynomials, form the orthogonal basis.

Category: Physics