Exact Results for a Kondo Problem in One Dimensional t-J Model

Дата и время публикации : 1997-06-11T00:45:48Z

Авторы публикации и институты :
Yupeng Wang
Jianhui Dai
Zhanning Hu
Fu-Cho Pu

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 5 pages Revtex, no figures
Первичная категория: cond-mat.str-el

Все категории : cond-mat.str-el

Краткий обзор статьи: We propose an integrable Kondo problem in a one-dimensional (1D) $t-J$ model. With the open boundary condition of the wave functions at the impurity sites, the model can be exactly solved via Bethe ansatz for a class of $J_{R,L}$ (Kondo coupling constants) and $V_{L,R}$ (impurity potentials) parametrized by a single parameter $c$. The integrable value of $J_{L,R}$ runs from negative infinity to positive infinity, which allows us to study both the ferromagnetic Kondo problem and antiferromagnetic Kondo problem in a strongly correlated electron system. Generally, there is a residual entropy for the ground state, which indicates a typical non-Fermi liquid behavior.

Category: Physics