Exact calculation of multifractal exponents of the critical wave function of Dirac fermions in a random magnetic field

Дата и время публикации : 1997-06-10T22:29:16Z

Авторы публикации и институты :
Horacio E. Castillo
Claudio de C. Chamon
Eduardo Fradkin
Paul M. Goldbart
Christopher Mudry

Ссылка на журнал-издание: Phys. Rev. B56, 10668 (1997)
Коментарии к cтатье: 11 pages, REVTEX, manuscript as published in Phys. Rev. B, minor changes with respect to first version
Первичная категория: cond-mat.mes-hall

Все категории : cond-mat.mes-hall, cond-mat.dis-nn, cond-mat.stat-mech

Краткий обзор статьи: The multifractal scaling exponents are calculated for the critical wave function of a two-dimensional Dirac fermion in the presence of a random magnetic field. It is shown that the problem of calculating the multifractal spectrum maps into the thermodynamics of a static particle in a random potential. The multifractal exponents are simply given in terms of thermodynamic functions, such as free energy and entropy, which are argued to be self-averaging in the thermodynamic limit. These thermodynamic functions are shown to coincide exactly with those of a Generalized Random Energy Model, in agreement with previous results obtained using Gaussian field theories in an ultrametric space.

Category: Physics