Exact solution of a 2d random Ising model

Дата и время публикации : 1997-05-16T11:58:23Z

Авторы публикации и институты :
Maurizio Serva (Dipartimento di Matematica and I.N.F.M., Università dell’Aquila, Italy)

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 10 pages, Plain TeX, 3 ps figures, submitted to Europhys. Lett
Первичная категория: cond-mat.dis-nn

Все категории : cond-mat.dis-nn

Краткий обзор статьи: The model considered is a d=2 layered random Ising system on a square lattice with nearest neighbours interaction. It is assumed that all the vertical couplings are equal and take the positive value J while the horizontal couplings are quenched random variables which are equal in the same row but can take the two possible values J and J-K in different rows. The exact solution is obtained in the limit case of infinite K for any distribution of the horizontal couplings. The model which corresponds to this limit can be seen as an ordinary Ising system where the spins of some rows, chosen at random, are frozen in an antiferromagnetic order. No phase transition is found if the horizontal couplings are independent random variables while for correlated disorder one finds a low temperature phase with some glassy properties.

Category: Physics