Correlation of internal representations in feed-forward neural networks

Дата и время публикации : 1996-04-11T14:37:04Z

Авторы публикации и институты :
Andreas Engel

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 6 pages, latex, 1 figure
Первичная категория: cond-mat

Все категории : cond-mat

Краткий обзор статьи: Feed-forward multilayer neural networks implementing random input-output mappings develop characteristic correlations between the activity of their hidden nodes which are important for the understanding of the storage and generalization performance of the network. It is shown how these correlations can be calculated from the joint probability distribution of the aligning fields at the hidden units for arbitrary decoder function between hidden layer and output. Explicit results are given for the parity-, and-, and committee-machines with arbitrary number of hidden nodes near saturation.

Category: Physics