Algebraic bosonization: the study of the Heisenberg and Calogero-Sutherland models

Дата и время публикации : 1996-03-16T23:56:16Z

Авторы публикации и институты :
Marialuisa Frau
Alberto Lerda
Stefano Sciuto
Guillermo R. Zemba

Ссылка на журнал-издание: Int.J.Mod.Phys. A12 (1997) 4611-4661
Коментарии к cтатье: 51 pages, plain LaTeX
Первичная категория: hep-th

Все категории : hep-th, cond-mat

Краткий обзор статьи: We propose an approach to treat (1+1)–dimensional fermionic systems based on the idea of algebraic bosonization. This amounts to decompose the elementary low-lying excitations around the Fermi surface in terms of basic building blocks which carry a representation of the W_{1+infty} times {overline W_{1+infty}} algebra, which is the dynamical symmetry of the Fermi quantum incompressible fluid. This symmetry simply expresses the local particle-number current conservation at the Fermi surface. The general approach is illustrated in detail in two examples: the Heisenberg and Calogero-Sutherland models, which allow for a comparison with the exact Bethe Ansatz solution.

Category: Physics