Self-organized branching processes: Avalanche models with dissipation

Дата и время публикации : 1996-03-25T13:19:08Z

Авторы публикации и институты :
Kent Bækgaard Lauritsen (Niels Bohr Institute)
Stefano Zapperi (Boston Univ)
H. Eugene Stanley (Boston Univ)

Ссылка на журнал-издание: Phys. Rev. E 54, 2483-2488 (1996).
Коментарии к cтатье: 6 REVTeX pages; uses epsf.sty, multicol.sty; figures included
Первичная категория: cond-mat

Все категории : cond-mat

Краткий обзор статьи: We explore in the mean-field approximation the robustness with respect to dissipation of self-organized criticality in sandpile models. To this end, we generalize a recently introduced self-organized branching process, and show that the model self-organizes not into a critical state but rather into a subcritical state: when dissipation is present, the dynamical fixed point does not coincide with the critical point. Thus the level of dissipation acts as a relevant parameter in the renormalization-group sense. We study the model numerically and compute analytically the critical exponents for the avalanche size and lifetime distributions and the scaling exponents for the corresponding cutoffs.

Category: Physics