Universality near zero virtuality

Дата и время публикации : 1996-02-05T23:24:57Z

Авторы публикации и институты :
A. D. Jackson
M. K. Şener
J. J. M. Verbaarschot

Ссылка на журнал-издание: Nucl.Phys. B479 (1996) 707-726
Коментарии к cтатье: 23 pages, Latex
Первичная категория: hep-ph

Все категории : hep-ph, cond-mat

Краткий обзор статьи: In this paper we study a random matrix model with the chiral and flavor structure of the QCD Dirac operator and a temperature dependence given by the lowest Matsubara frequency. Using the supersymmetric method for random matrix theory, we obtain an exact, analytic expression for the average spectral density. In the large-n limit, the spectral density can be obtained from the solution to a cubic equation. This spectral density is non-zero in the vicinity of eigenvalue zero only for temperatures below the critical temperature of this model. Our main result is the demonstration that the microscopic limit of the spectral density is independent of temperature up to the critical temperature. This is due to a number of `miraculous’ cancellations. This result provides strong support for the conjecture that the microscopic spectral density is universal. In our derivation, we emphasize the symmetries of the partition function and show that this universal behavior is closely related to the existence of an invariant saddle-point manifold.

Category: Physics