Wilsonian Approximated Renormalization Group for Matrix and Vector Models in 2<d<4

Дата и время публикации : 1996-01-10T19:39:33Z

Авторы публикации и институты :
S. Nishigaki (Niels Bohr Inst.)

Ссылка на журнал-издание: Phys.Lett. B376 (1996) 73-81
Коментарии к cтатье: 11 pages, 2 PostScript figures, LaTeX + epsf.tex. Remarks on subleading exponents supplemented. To be published in Phys.Lett.B
Первичная категория: hep-th

Все категории : hep-th, cond-mat

Краткий обзор статьи: Wilson’s approximation scheme of RG recursion formula dropping momentum dependence of the propagators is applied to large-$N$ vector and matrix models in dimensions $2<d<4$ by making use of their exact solutions in zero dimension. In spite of apparent dependence of critical exponents upon the dilatational parameter $rho$ involved by the approximation, the exact exponents are reproduced for vector models in the limit $rhorightarrow 0$. Application to matrix models is then reexamined after the same fashion. It predicts critical exponents $nu=2/d$ and $eta=2-d/2$ for the $tr Phi^4$ matrix model.

Category: Physics