On Duality of Two-dimensional Ising Model on Finite Lattice

Дата и время публикации : 1996-01-20T09:09:01Z

Авторы публикации и институты :
Anatolij I. Bugrij (Bogolyubov Institute for Theoretical Physics, Kiev)
Vitalij N. Shadura (Bogolyubov Institute for Theoretical Physics, Kiev)

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 18 pages, LaTeX
Первичная категория: hep-th

Все категории : hep-th, cond-mat, hep-lat

Краткий обзор статьи: It is shown that the partition function of the 2d Ising model on the dual finite lattice with periodical boundary conditions is expressed through some specific combination of the partition functions of the model on the torus with corresponding boundary conditions. The generalization of the duality relations for the nonhomogeneous case is given. These relations are proved for the weakly-nonhomogeneous distribution of the coupling constants for the finite lattice of arbitrary sizes. Using the duality relations for the nonhomogeneous Ising model, we obtain the duality relations for the two-point correlation function on the torus, the 2d Ising model with magnetic fields applied to the boundaries and the 2d Ising model with free, fixed and mixed boundary conditions.

Category: Physics