Finite-Temperature Renormalization Group Predictions: The Critical Temperature Exponents, and Amplitude Ratios

Дата и время публикации : 1996-01-30T21:55:51Z

Авторы публикации и институты :
F. Freire
Denjoe O’Connor
C. R. Stephens
M. A. van Eijck

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 7 pages of LaTeX
Первичная категория: hep-th

Все категории : hep-th, cond-mat

Краткий обзор статьи: $lambdavarphi^4$ theory at finite temperature suffers from infrared divergences near the temperature at which the symmetry is restored. These divergences are handled using renormalization group methods. Flow equations which use a fiducial mass as flow parameter are well adapted to predicting the non-trivial critical exponents whose presence is reflected in these divergences. Using a fiducial temperature as flow parameter, we predict the critical temperature, at which the mass vanishes, in terms of the zero-temperature mass and coupling. We find some universal amplitude ratios which connect the broken and symmetric phases of the theory which agree well with those of the three-dimensional Ising model obtained from high- and low-temperature series expansions.

Category: Physics