Berry’s phase and Quantum Dynamics of Ferromagnetic Solitons

Дата и время публикации : 1996-01-31T18:43:39Z

Авторы публикации и институты :
Hans-Benjamin Braun
Daniel Loss

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 20 pages, RevTex 3.0 (twocolumn), to appear in Phys. Rev. B 53, 3237 (1996), 4 PS figures available upon request
Первичная категория: cond-mat

Все категории : cond-mat

Краткий обзор статьи: We study spin parity effects and the quantum propagation of solitons (Bloch walls) in quasi-one dimensional ferromagnets. Within a coherent state path integral approach we derive a quantum field theory for nonuniform spin configurations. The effective action for the soliton position is shown to contain a gauge potential due to the Berry phase and a damping term caused by the interaction between soliton and spin waves. For temperatures below the anisotropy gap this dissipation reduces to a pure soliton mass renormalization. The gauge potential strongly affects the quantum dynamics of the soliton in a periodic lattice or pinning potential. For half-integer spin, destructive interference between soliton states of opposite chirality suppresses nearest neighbor hopping. Thus the Brillouin zone is halved, and for small mixing of the chiralities the dispersion reveals a surprising dynamical correlation: Two subsequent band minima belong to different chirality states of the soliton. For integer spin, the Berry phase is inoperative and a simple tight-binding dispersion is obtained. Finally it is shown that external fields can be used to interpolate continuously between the Bloch wall dispersions for half-integer and integer spin.

Category: Physics