SPHERICALLY SYMMETRIC RANDOM WALKS III. POLYMER ADSORPTION AT A HYPERSPHERICAL BOUNDARY

Дата и время публикации : 1995-06-06T17:00:47Z

Авторы публикации и институты :
Carl M. Bender (Washington U. in St. Louis)
Peter N. Meisinger (Washington U. in St. Louis)
Stefan Boettcher (Brookhaven National Laboratory)

Ссылка на журнал-издание: Phys.Rev.E54:127-135,1996
Коментарии к cтатье: 20 pages, Revtex, uuencoded, (two ps-figures included, fig2 in color)
Первичная категория: hep-lat

Все категории : hep-lat, cond-mat

Краткий обзор статьи: A recently developed model of random walks on a $D$-dimensional hyperspherical lattice, where $D$ is {sl not} restricted to integer values, is used to study polymer growth near a $D$-dimensional attractive hyperspherical boundary. The model determines the fraction $P(kappa)$ of the polymer adsorbed on this boundary as a function of the attractive potential $kappa$ for all values of $D$. The adsorption fraction $P(kappa)$ exhibits a second-order phase transition with a nontrivial scaling coefficient for $0<D<4$, $Dneq 2$, and exhibits a first-order phase transition for $D>4$. At $D=4$ there is a tricritical point with logarithmic scaling. This model reproduces earlier results for $D=1$ and $D=2$, where $P(kappa)$ scales linearly and exponentially, respectively. A crossover transition that depends on the radius of the adsorbing boundary is found.

Category: Physics