Are critical finite-size scaling functions calculable from knowledge of an appropriate critical exponent?

Дата и время публикации : 1995-03-30T08:56:48Z

Авторы публикации и институты :
R. Hilfer
N. B. Wilding

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 11 pages postscript, plus 2 separate postscript figures, all as uuencoded gzipped tar file. To appear in J. Phys. A.
Первичная категория: cond-mat

Все категории : cond-mat

Краткий обзор статьи: Critical finite-size scaling functions for the order parameter distribution of the two and three dimensional Ising model are investigated. Within a recently introduced classification theory of phase transitions, the universal part of the critical finite-size scaling functions has been derived by employing a scaling limit that differs from the traditional finite-size scaling limit. In this paper the analytical predictions are compared with Monte Carlo simulations. We find good agreement between the analytical expression and the simulation results. The agreement is consistent with the possibility that the functional form of the critical finite-size scaling function for the order parameter distribution is determined uniquely by only a few universal parameters, most notably the equation of state exponent.

Category: Physics