Secondary Instabilities and Spatiotemporal Chaos in Parametric Surface Waves

Дата и время публикации : 1993-11-19T19:32:23Z

Авторы публикации и институты :
Wenbin Zhang (Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida)
Jorge Vinals (Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida)

Ссылка на журнал-издание: Phys. Rev. Lett. 74, 690 (1995)
Коментарии к cтатье: Ссылка на журнал-издание не найдена
Первичная категория: patt-sol

Все категории : patt-sol, chao-dyn, cond-mat, nlin.CD, nlin.PS

Краткий обзор статьи: A two dimensional model is introduced to study pattern formation, secondary instabilities and the transition to spatiotemporal chaos (weak turbulence) in parametric surface waves. The stability of a periodic standing wave state above onset is studied against Eckhaus, zig-zag and transverse amplitude modulations (TAM) as a function of the control parameter $varepsilon$ and the detuning. A mechanism leading to a finite threshold for the TAM instability is identified. Numerical solutions of the model are in agreement with the stability diagram, and also reveal the existence of a transition to spatiotemporal chaotic states at a finite $varepsilon$. Power spectra of temporal fluctuations in the chaotic state are broadband, decaying as a power law of the frequency $omega^{-z}$ with $z approx 4.0$.

Category: Physics