New fission fragment distributions and r-process origin of the rare-earth elements

Дата и время публикации : 2013-11-22T21:00:10Z

Авторы публикации и институты :
S. Goriely (ULB, Brussels)
J. -L. Sida (CEA Saclay, Gif-sur-Yvette)
J. -F. Lemaitre (CEA Saclay, Gif-sur-Yvette)
S. Panebianco (CEA Saclay, Gif-sur-Yvette)
N. Dubray (CEA, DAM, DIF, Arpajon)
S. Hilaire (CEA, DAM, DIF, Arpajon)
A. Bauswein (Aristotle Univ., Thessaloniki, MPI for Astrophysics, Garching)
H. -Thomas Janka (MPI for Astrophysics, Garching)

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 5 pages, 5 figures; accepted by Phys. Rev. Letters
Первичная категория: astro-ph.SR

Все категории : astro-ph.SR, nucl-ex, nucl-th

Краткий обзор статьи: Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 < A < 170 nuclei. Here we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A ~ 278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations we show that this specific FFD leads to a production of the A ~ 165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r-nuclei with A > 140.

Category: Physics