Dust input from AGB stars in the Large Magellanic Cloud

Дата и время публикации : 2013-05-15T15:24:35Z

Авторы публикации и институты :
Svitlana Zhukovska
Thomas Henning

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: Accepted to A&A
Первичная категория: astro-ph.GA

Все категории : astro-ph.GA

Краткий обзор статьи: The dust-forming population of AGB stars and their input to the interstellar dust budget of the Large Magellanic Cloud (LMC) are studied with evolutionary dust models with the main goals (1) to investigate how the amount and composition of dust from AGB stars vary over galactic history; (2) to characterise the mass and metallicity distribution of the present population of AGB stars; (3) to quantify the contribution of AGB stars of different mass and metallicity to the present stardust population in the interstellar medium (ISM). We use models of the stardust lifecycle in the ISM developed and tested for the Solar neighbourhood. The first global spatially resolved reconstruction of the star formation history of the LMC from the Magellanic Clouds Photometric Survey is employed to calculate the stellar populations in the LMC. The dust input from AGB stars is dominated by carbon grains from stars with masses < 4 Msun almost over the entire history of the LMC. The production of silicate, silicon carbide and iron dust is delayed until the ISM is enriched to about half the present metallicity in the LMC. For the first time, theoretically calculated dust production rates of AGB stars are compared to those derived from IR observations of AGB stars for the entire galaxy. We find good agreement within scatter of various observational estimates. We show that the majority of silicate and iron grains in the present stardust population originate from a small population of intermediate-mass stars consisting of only about 4% of the total number of stars, whereas in the Solar neighbourhood they originate from low-mass stars. With models of the lifecycle of stardust grains in the ISM we confirm a large discrepancy between dust input from stars and the existing interstellar dust mass in the LMC reported in Matsuura et al. 2009.

Category: Physics