Initial phases of massive star formation in high infrared extinction clouds. II. Infall and onset of star formation

Дата и время публикации : 2012-10-07T14:54:43Z

Авторы публикации и институты :
K. L. J. Rygl (Istituto di Astrofisica e Planetologia Spaziali, Max-Planck-Institut fuer Radioastronomie)
F. Wyrowski (Max-Planck-Institut fuer Radioastronomie)
F. Schuller (European Southern Observatory, Max-Planck-Institut fuer Radioastronomie)
K. M. Menten (Max-Planck-Institut fuer Radioastronomie)

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: Ссылка на журнал-издание не найдена
Первичная категория: astro-ph.GA

Все категории : astro-ph.GA

Краткий обзор статьи: The onset of massive star formation is not well understood because of observational and theoretical difficulties. To find the dense and cold clumps where massive star formation can take place, we compiled a sample of high infrared extinction clouds, which were observed previously by us in the 1.2 mm continuum emission and ammonia. We try to understand the star-formation stages of the clumps in these high extinction clouds by studying the infall and outflow properties, the presence of a young stellar object (YSO), and the level of the CO depletion through a molecular line survey with the IRAM 30m and APEX 12m telescopes. Moreover, we want to know if the cloud morphology, quantified through the column density contrast between the clump and the clouds, has an impact on the star formation occurring inside it. We find that the HCO+(1-0) line is the most sensitive for detecting infalling motions. SiO, an outflow tracer, was mostly detected toward sources with infall, indicating that infall is accompanied by collimated outflows. The presence of YSOs within a clump depends mostly on its column density; no signs of YSOs were found below 4E22 cm-2. Star formation is on the verge of beginning in clouds that have a low column density contrast; infall is not yet present in the majority of the clumps. The first signs of ongoing star formation are broadly observed in clouds where the column density contrast between the clump and the cloud is higher than two; most clumps show infall and outflow. Finally, the most evolved clumps are in clouds that have a column density contrast higher than three; almost all clumps have a YSO, and in many clumps, the infall has already halted. Hence, the cloud morphology, based on the column density contrast between the cloud and the clumps, seems to have a direct connection with the evolutionary stage of the objects forming inside.

Category: Physics