Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

Дата и время публикации : 2012-08-16T03:56:56Z

Авторы публикации и институты :
Wendy L. Freedman
Barry F. Madore
Victoria Scowcroft
Chris Burns
Andy Monson
S. Eric Persson
Mark Seibert
Jane Rigby

Ссылка на журнал-издание: Ссылка на журнал-издание не найдена
Коментарии к cтатье: 27 pages, 8 figures, Accepted for publication in Ap J
Первичная категория: astro-ph.CO

Все категории : astro-ph.CO

Краткий обзор статьи: Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 um with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt Law (the Cepheid Period-Luminosity relation) using time-averaged 3.6 um data for ten high-metallicity, Milky Way Cepheids having independently-measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6 um data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8. We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H0, also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H0 over that obtained by the Hubble Space Telescope (HST) Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H0 = 74.3 with a systematic uncertainty of +/-2.1 (systematic) km/s/Mpc, corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7 measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w0 = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yields w0 = -1.08 +/- 0.10 and a value of N_eff = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

Category: Physics