Sampling theorems and compressive sensing on the sphere

Дата и время публикации : 2011-10-28T11:20:42Z

Авторы публикации и институты :
J. D. McEwen
G. Puy
J. -Ph. Thiran
P. Vandergheynst
D. Van De Ville
Y. Wiaux

Ссылка на журнал-издание: Proc. SPIE 8138, Wavelets and Sparsity XIV, 81381F (2011)
Коментарии к cтатье: 9 pages, 2 figures, Proceedings of Wavelets and Sparsity XIV, SPIE Optics and Photonics 2011
Первичная категория: cs.IT

Все категории : cs.IT, astro-ph.IM, math.IT

Краткий обзор статьи: We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.

Category: Physics