Соединение легких ядер.

Соединение легких ядер. Как известно, ядерную энер­гию можно получить как при делении ядер тяжелых, так и при соединении ядер легких элементов. Мы уже умеем получать и использовать энергию при делении ядер изо­топа естественного урана — урана235 и ядер искусственных изотопов — урана233 и плутония239.

Физики еще раньше, чем была открыта реакция деле­ния урана, знали, что при бомбардировке легких ядер быстрыми заряженными частицами происходят ядерные реакции, в которых выделяется очень большая энергия. Например, при бомбардировке лития ядрами водорода — протонами выделяется энергия, примерно в два с полови­ной раза большая, чем при делении урана, если отнести эту энергию к единице веса вещества, входящего в реак­цию. Еще большая энергия получается при образовании ядер гелия из различных изотопов водорода.

Однако произвести соединение ядер не так легко. Ведь одноименно заряженные ядра с большой силой отталкиваются. Поэтому для того чтобы производить та­кие ядерные реакции, нужно ускорять заряженные частицы на специальных аппаратах-ускорителях. Но можно ли на ускорителях получать атомную энергию для практических целей? Оказывается, нет. Из огромного числа частиц лишь одна совершит ядерную реакцию, и энергии, выделенной при этом, недостаточно даже для того, чтобы компенсировать работу, затраченную на уско­рение миллионов заряженных частиц, которые пройдут мимо атомных ядер. Таким путем нельзя получить выигрыш в энергии.

Очевидно, что для получения энергии при соединении легких ядер нужен процесс, который сам себя поддержи­вает. Оказалось, что для получения быстрых частиц совсем необязательно применять ускорители. Вспомните, ведь атомы и молекулы любого вещества всегда нахо­дятся в непрерывном движении. Причем скорость дви­жения атомов, а следовательно, и ядер растет с повыше­нием температуры вещества. Поэтому надо нагреть смесь легких элементов. Ядра этих элементов при своем движе­нии будут сталкиваться друг с другом — соединяться. Происходят ядерные реакции и выделяется энергия. Если тепла, получающегося в этих реакциях, достаточно, чтобы поддержать высокую температуру вещества, то будет осу­ществляться самоподдерживающийся ядерный процесс. Этот процесс и называется термоядерной реакцией.

Примерно так же мы зажигаем смесь газа с воздухом в газовой горелке. Вы знаете, что газ сам по себе не за­горится. Для его горения необходима температура по­рядка 400—500 градусов. Надо повернуть кран, пустить газ и поднести к нему зажженную спичку. Дальше уже газ сам будет поддерживать свое горение. Будет идти так называемая термохимическая реакция, при которой тепла, выделяющегося за счет химической реакции горе­ния газа, достаточно, чтобы поддерживать существование самой реакции.

То же самое будет, если мы как-нибудь подожжем смесь легких элементов. Будет идти поддерживающая сама себя термоядерная реакция, при которой будет вы­деляться энергия, в десятки миллионов раз большая энергии любой химической реакции.

Но оказалось, что сделать это совсем не так просто. Для «зажигания» термоядерной реакции уже простая спичка не годится; нужна зажигалка, дающая темпера­туру в несколько миллионов градусов. Только тогда ско­рость некоторой части легких ядер будет достаточна для преодоления отталкивающих электростатических сил и осуществления ядерных реакций.