скорость его истечения, тем больше скорость ракеты, снаряда или самолета.
Рис. 68. Схема обычного реактивного двигателя. Воздух попадает в камеру сгорания, где происходит сжигание топлива, и раскаленные газы направляются в выхлопное сопло. Реактивный снаряд движется за счет отдачи, происходящей при выхлопе газов
Очевидно, что при использовании атомной энергии для осуществления реактивного движения роль камеры сгорания должен играть ядерный реактор. Простейшая схема такого прямоточного реактивного двигателя изображена на рис. 69. Воздух нагнетается здесь в каналы реактора благодаря быстрому поступательному движению самолета. В каналах реактора воздух нагревается и с большой скоростью вытекает через выхлопное сопло. Такая схема может быть осуществлена только при очень больших
Рис. 69. Схема прямоточного реактивного двигателя на атомном горючем. Здесь камера сгорания заменена ядерным реактором. Воздух попадает в трубы ядерного реактора, где нагревается до высокой температуры. Горячие газы попадают в выхлопное сопло
Рис. 71. Атомный турбовинтовой двигатель
скоростях самолета, когда создается высокое давление воздуха в каналах ядерного реактора.
Рис. 70. Схема атомного турбореактивного двигателя
Более совершенным является турбореактивный двигатель (рис. 70). Здесь высокое давление воздуха создается компрессором независимо от скорости самолета. Часть энергии нагретого газа расходуется на вращение газовой турбины, приводящей в движение компрессор. Основная же энергия тратится на тяговое усилие, создаваемое реакцией выхлопных газов.
Возможна также постройка винтового атомного самолета, где будет применена уже знакомая нам схема с замкнутым циклом компрессор — реактор — газовая турбина (рис. 71).
Основным препятствием к использованию ядерной энергии в самолетах является большой вес бетонной защиты для предохранения экипажа и пассажиров от вредных излучений реактора. Она