делении урана являются два «осколка», на которые расщепляется ядро урана235. Но удаление их — несравненно более сложная операция, чем удаление золы сгоревшего угля: ведь «осколки» обладают большой радиоактивностью. Выгребать же радиоактивные вещества так, как мы выгребаем золу из топки, нельзя. Кроме того, «зола» цепного процесса скапливается внутри урановых блоков, и выбрасывать эти блоки нельзя, так как они содержат очень много весьма ценных материалов: почти весь уран238, идущий на изготовление искусственного ядерного горючего, значительное количество урана235, а также получающийся в ядерных превращениях плутоний239. Все эти материалы, после того как они будут химическим путем очищены от «осколков», снова могут быть использованы в работе реакторов.
Радиоактивность продуктов ядерного реактора вызывает необходимость в разработке весьма сложных механизмов для транспортировки и переработки использованных урановых блоков. Люди должны управлять этими операциями на больших расстояниях.
Наконец, цепной процесс предъявляет особые требования к материалам, применяемым в ядерном реакторе.
Мы видели, что поглощение нейтронов в реакторе затрудняет получение атомной энергии и искусственного горючего. В реакторе, работающем на природном уране, большая потеря нейтронов приводит к прекращению цепного процесса. Особенно вредно поглощение нейтронов в размножающем реакторе. Каждый потерянный там нейтрон означает потерю ядра плутония239 или урана233.
Поглощение нейтронов ядрами веществ приводит к образованию изотопа того же элемента. Если этот изотоп радиоактивен, то он постепенно переходит в другой элемент. При этом может измениться объем вещества. В результате меняется прочность материалов, разрушаются металлические оболочки конструкций и стенки труб. Поэтому материалы, используемые в различных конструкциях ядерных реакторов, должны как можно меньше поглощать нейтроны.
Кроме того, эти материалы должны быть стойкими и в отношении интенсивного радиоактивного облучения. Многие вещества при радиоактивном облучении разрушаются, активнее вступают в различные химические реакции, усиливается коррозия их поверхности. В последнее время ученые исследовали и начали использовать в реакторах мало применявшиеся до сих пор редкие металлы, такие, например, как цирконий. Оказалось, что очень чистый цирконий слабо поглощает нейтроны и почти не изменяет своих химических свойств при интенсивном радиоактивном облучении. По-видимому, этот тугоплавкий металл в ближайшее время найдет себе широкое применение при строительстве ядерных реакторов для атомных двигателей.
При использовании атомной энергии надо тепло, выделяемое